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Lower bounds tQ the overlap 
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Institut fur Strahlenchemie im Max-Planck-Institut fur Kohlenforschung, D-433 
Miilheim/Ruhr, West Germany 

Received 16 June 1975, in final form 27 August 1975 

A M & .  A variational lower bound to the overlap of the ground state t,bo of a quantum 
mechanical system with an approximate wavefunction 4 is given. The properties of this 
b u n d ,  which had been derived in a recent paper by the authors, are discussed. A simplified 
non-variational formula is deduced from this lower bound to /(~$)t,b,J/. Both versions are 
illustrated with an application to the hydrogen atom and are compared with the lower 
bundsof Eckart and Wang. The non-variational version turnsout to be auseful alternative 
to Eckart’s bound. 

1. introduction 

In order to bracket quantum mechanical properties (Weinhold 1972) the overlap 
~ S k ~ = ~ ( ~ ~ $ k ) ~  must often be estimated. Thereby (d(d)=($kl$kk)=l and d is an 
approximation to a solution $k of the time-independent Schrodinger equation 
H$k=€kJIII(Ek s E k C l ;  k =0, 1,2, :. .), H being self-adjoint. Furthermore ISk/ is a 
measure of the accuracy achieved in an actual calculation. Therefore, bounds to the 
overlap are desirable. Such bounds have been reviewed by Weinhold (1970) and very 
recently a general theory of variational bounds to the overlap has been presented by 
Basley and Robinson (1975). 

In a recent paper (Hoffmann-Ostenhof and Hoffmann-Ostenhof 1975) we derived 
variational lower bounds to ISk/’. Here we shall investigate properties of the bound to 
ISof and derive a new non-variational bound to /Sol*. These bounds are illustrated by a 

example and compared with the bounds of Eckart (1930) and Wang (1969). 
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with m>O and Eo non-degenerate. Starting from !l), we deduced by means ofan 

operator inequality the following variational bound 

T Hoffmann-Ostenhof, M Hoffmann - Ostenhof and G Olbrich 

from here on referred to as bound I. Thereby q is a lower bound to the lowa 
eigenvalue qo of MO such that O <  q C qo. x is a variational function which should k 
chosen such that the occumng integrals exist. Equality is achieved in (3) for 

x O p c =  MiZ@.  
Since bound I, the main result of our previous paper, contains integrals over H3& 

application of this bound will be confinedio simple-systems. Therefore it is desirableto 
derive an inequality which is more appropriate for practical applications. Inserting dl0 
in (3) for the variational function x and taking into account So+ we obtain8 
non-variational version of bound I 

where only integrals over H are encountered. However the determination of tbe 
parameters m and q poses the same problem as in bound I. In the following we shall 
refer to (4) as bound 11. 

3. Properties of the bounds 

in this section various properties of bound I and bound I1 will be investigated. 

3.1. On the parameters m and q 

The quality of the bounds I and I1 depends upon the parameters m and 4, q being 
restricted by 0 q d qo. A lower bound q to the lowest eigenvalue qo of MO might be 
determined, for instance, by the method of intermediate problems (Weinstein and 
Stenger 1972) or by Weinstein’s formula (Weinstein 1934). However, MO contains the 
parameter m and therefore q and qo depend upon m. 

We are now going to show that 

lim qo(m) = /sol2. (9 
m+W 

The proof is very simple. Denoting m-’ by k and considering the operator kkfoik-’)? 
the Hellmann-Feynman theorem leads to 

On the other hand considering the difference quotient we arrive at 

-(bO(k-11)1 d = lim qo(k-’). 
dk +o k++O 

qo(m)clSol 2 * 

Since qO(m) is a monotonically increasing function 
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Mrhshilarconsiderations it can be shown that the highest eigenvalue of MO(-m) is 
*panupper bound to [Sol2 and approaches [Sol2 monotonically as m goes to infinity. 
marelated approach to bounds for expectation values see Maziotti (1971). 

N~~ let us consider bound I as a function of q for fixed m and x and denote it with 
One easily sees that 4 S d q ) .  Furthermore it can be shown (see appendix) that 

")' a monotonically non-decreasing function. That is to say, the better qo is 
Ilrproxlmated by 4 the better will be the bound 44). Apparently these considerations 
ddalso for bound 11. 

Unfortunately the optimization of the bounds with respect to m for fixed ,y is not 
Jaaigbtforward, since 40 varies simultaneously with m. The example in $4 will 
*trate the behaviour of the bounds with respect to m. 

Lower bounds to the overlap 

dq) k. 

32 i'ke limiting behaviour of the bounds for m + +O 
bthe analysis of the limiting behaviour of the bounds I and I1 for m + +0, it will be 
convenient to insert the eigenvalue qo(m) in (3). Applying the rule of De 1'Hdpital we 
obtain 

With the aid of the Hellmann-Feynman theorem we conclude that 

d (?71H-EoId 
dm t (?7177) ' 
-qo(+O)= inf 

( t I + ) p O  

Inequality (7) does not contain the variational function x ;  hence bounds I and I1 
approach the same value for decreasing m. This means for small m it will be sufficient to 
workwith the simpler bound 11. Obviously in (7) (d/dm)qo(+O) can be replaced by a 
h e r  bound. 

33. Behaciour for 4 = & 
If4=ll, and ,y # t,bo then bound I becomes 

Um2(E~-E~)-' ,  qo = 1 and for q = qo, (9) is an equality. For 4 = q0 bound I1 becomes 
Iforevery possible q. 

3.4. Modification for unknown Eo 

IheboundsI and I1 contain the ground state energy Eo of H. However, this quantity is 
w ~ ~ l l Y  known exactly. In the following it will be shown how we can involve an 
Wrbound to Eo instead of Eo itself. For this purpose we consider the function w ( E ) ,  
adby W ( E ) = ( ~ I L ( E ) - ~ / ~ ) ,  whereby L ( E ) =  m(H-e)+I4)(4l7 m>O and E real. 
Note that W(Eo)=lSol-2. It is easy to see that W ( E )  is a monotonically increasing 

for e Z E o ,  provided L(E)>O. For given m and €LEO the positive- 
defmiteness of L is guaranteed if qo(m)2m(E-Eo). If q meets the condition 
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~ ( c ) a q l > O a n d  ebEO then 

4. Nlrmerical application and discussion 

In the following, a numerical application of the bounds I and I1 to the ground stateof& 
hydrogen atom will illustrate some of the properties investigated in the previm 
section. Furthermore, we compare the results with those obtained by applying Eckuss 
formula (1 930) 

and Wang’s bound (1969) 

to the same problem. These bounds require similar information as bounds I1 andl 
respectively (the same integrals are involved). 

4.1. Numerical results 

As trial functions we chose simple exponentials e-5r with the exponents 5 = 0.6.0.7,O-8 
respectively. The corresponding expectation values of H are (4lHI$)= -0.8 
-0.455, -0.48 au. 

The variational function x for bound I and Wang’s bound was taken to be 

x =[ 1 +(a - l)r] e-Qr (lj! 

in which the parameter CY is to be varied. This function which has also been used& 
Weinhold (1970) ensures the existence of the integral (xIH3(~). 

For the lower bound 4 ( m )  to the lowest eigenvalue of the operator Mo(m) w e t d  
Weinstein’s formula (1934) 

d m )  = (~IMo(m)lx>-A, A‘ = (xIMXm)Ix) - (x /~o(m)Ix) ’  (141 

which has been evaluated using function (13) also. Weinstein’s formula is valid 
provided 

(XIMo(m)IX)+A<qi (15) 

holds; 41 being the eigenvalue which is closest to qo. To be sure that condition (lj)ic 
met we diagonalized a matrix representation of Mo(m) in a basis of 17 Slater functions. 
We assume the first eigenvalues to be accurate, at least to four digits. In Orderio 
compute (71, (d/dm)q,(+O) was approximated in the same basis by diagonalizing a 
matrix representation of ( I -  16)(+1)(~- E ~ ) ( I -  )4)(+1). 

The computed bounds are collected in table 1. The three columns of this tabk 
correspond to the three different trial functions used. The third and fourth Io’ 
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Table 1. 

0.6 0.7 0.8 
4 

0.82397461 0.90945364 0.96341 833 z- 0.78666667 0.88000000 0-94666667 
0.909450 19 0.96341801 w 

W 0.82395928 
0.8225 0.8591 0.9032 

0.80846655 
2.8 
0.60393904 
0.6984 
0.82330389 
4.4 
0.68667712 
0.7458 
0.7813 
0.800 

0.901 18214 
4.5 
0-83344080 
0-7574 
0.90929812 
8.5 
0.86554932 
0.8236 
0.8414 

0.886 

0-9605858 1 
7.0 
0.94627262 
0.8316 

0.96339870 

0.95093301 
0.8905 
0.8972 
0.948 

16.0 

mespond to Wang’s bound and the optimal a-value of the variational function x. In 
thenextrow the computed values of bound I1 are given. The bound was optimized with 
respect to the parameter m. Furthermore for each value of m, q has been optimized by 
varylng a in function (13). In the following three rows the optimal m-value mII, the 
corresponding Weinstein bound q and the optimal a-value aq are presented. In an 
analogous way the values for bound I in the next row have been determined. The values 
dsemerged from the final optimization of formula (3) with respect to x. The last row 
piesentsan approximation to inequality (7). Since it turned out that the bounds I and I1 
wereslowly varying functions of m, we determined this parameter only to one decimal 
#e. In all cases the parameter a in the variational function was calculated to four 
decrmal places. 

Figure 1 demonstrates the m-dependence of bound I1 and of q. Curve A corres- 
Pndsto d m )  and curve B to bound 11. The third curve C represents an approximation 
yqo(m). The curves in figure 1 refer to the trial function, with 5 = 0.6. For the other 
lnaJ functions similar curves were obtained. 

$2 Discussion of the results 

Intable 1, Wang’s bound exceeds bound I. The following relation explains partly the 
kmdsuperiority of Wang’s bound. Insertingx,,, = Mo(m)-’$ into (12), equality is 
&eved for every m # 0. This can be verified using the identity 

H!weverthis does not imply that Wang’s bound always exceeds bound I. For example 
5=0.7, m = 4 ,  q=O.8192 and a I =  1.2 bound I gives 0.9084 compared with 

0.9054 from Wang’s formula with the same x. 
in figure 1, bound I1 exceeds Eckart’s bound for small m. This can 

bean advantage since it will be difficult to obtain accurate lower bounds to q d m )  for 
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m 

Figare 1. The m-dependenceof bound I1 and q. A, q ( m ) ;  B, bound 11; C, approximatime 
qdm).  

large m. For very small m condition (15) could not be fulfilled with our special fun& 
(13). However, formula (7) leads to bounds comparable with the corresponding Eckw 
values. 

Let us finally compare bound I and bound 11. In the example chosen, bound1 a l W Y  
exceeds bound 11, reflecting the fact that ,y equals cL0 for cy = 1. In general this willnd 
be the case. Hence there will be cases where the simpler bound I1 will supply a bener 
approximation to /Sol2 than bound I does. 

5. Condudi  remarks 

In bound I only the ground state energy Eo occurs, whereas to our knowledge in O M  

variational lower bounds to Eo and El must be known (eg Weinhold 1g7O9 
Barnsley and Robinson 1975). If, in Wang's bound, El  is not known, it mutbe 
replaced by some cl S El  and equality can no longer be achieved. In such cases i t ~ u b e  
reasonable to apply bound I, since equality can be achieved for every 4 with O < w  
at least in principle. 

because of its simplicity. Based on our results we believe that bound I1 will be, inman!' 
situations, a useful alternative to Eckart's bound if the evaluation of some accurate 
lower bound to qO(m) is not too difficult. 

However, the most promising result of this investigation appears to be bound 
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iamonotonically non-decreasing function for 0 < 4 s qo. 
we shall use the abbreviations 

a, = CXlf&lX>> a2 = <xlJ%lxL a3 2 W(+IX)(XIMOI~>>, 

a4= 1(x14)I2 and a5 = I < X ] M ~ ~ + > ) ~ .  
l l e  first derivative of ~ ( 4 )  exists for 0 < q 6 qo and can be written as 

&re 
D (4) = ( a2 a4 - a, u3 + a:)q2 - 2a,(a2 - a5)q -t 

~ ( q )  = -a4$ + (a3 - a& + (az - as). 

- a5) 

lod 

Comidering the extremum (q*, D*) of the polynomial D(q) it can be easily seen that 
The 

gacement of u3 by its absolute value implies b 2 0. Since u2 2 a5 3 0 and u2c 3 b, 
(30 follows. Therefore D(q) has a minimum with D* 0. Thus (d/dq)cr(q) 3 0 for 

p=(a2-a,)bc-', where b = a~a4-aala,a,+a,a5 2 and c = a2a4-aa,a3+a1. 2 

o<qsqo. 
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