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Abstract. A variational lower bound to the overlap of the ground state ¢ of a quantum
mechanical system with an approximate wavefunction ¢ is given. The properties of this
bound, which had been derived in a recent paper by the authors, are discussed. A simplified
non-variational formula is deduced from this lower bound to {(¢}¥o)]. Both versions are
illustrated with an application to the hydrogen atom and are compared with the lower
bounds of Eckart and Wang. The non-variational version turns out to be a useful alternative
to Eckart’s bound.

1. Introduction

In order to bracket quantum mechanical properties (Weinhold 1972) the overlap
[S|=}(dl¢x)| must often be estimated. Thereby (@|d)= (U |t)=1 and ¢ is an
approximation to a solution ¢, of the time-independent Schrédinger equation
By =E(E.<E.,;;k=0,1,2,...), H being self-adjoint. Furthermore |S;| is a
measure of the accuracy achieved in an actual calculation. Therefore, bounds to the
overlap are desirable. Such bounds have been reviewed by Weinhold (1970) and very
recently 2 general theory of variational bounds to the overlap has been presented by
Bansley and Robinson (1975).

.In'a recent paper (Hoffmann-Ostenhof and Hoffmann-Ostenhof 1975) we derived
vanational lower bounds to |, |*. Here we shall investigate properties of the bound to
154 and derive a new non-variational bound to |So|%. These bounds are illustrated by a
Mumerical example and compared with the bounds of Eckart (1930) and Wang (1969).

1. Lower bounds to the overlap

gu our recent paper (Hoffmann-Ostenhof and Hoffmann-Ostenhof 1975) we derived a
Osed expression for the overlap

|ol? = (| M57| )™ v
where

Mo=m(H-Eo)+|¢Xd| ?
owhg,

m aj
shhlend_‘emli:‘:!"espopden.c? should be addressed. Present address: Institut fitr Theoretische Chemie und
er Universitit Wien, Wihringer Strasse 17, A-1090 Wien, Austria,
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with m>0 and E, non-degenerate. Starting from (1), we deduced by means of 4
operator inequality the following variational bound

o (o KeIMo=allof\
547 4[1 .<le3—qM;|x>)

from here on referred to as bound I. Thereby g is a lower bound to the loweg
eigenvalue g, of M, such that 0<g<g,. x is a variational function which should p
chosen such that the occurring integrals exist. Equality is achieved in (3) fy
Xop= M0’ 9. o

Since bound I, the main result of our previous paper, contains integrals over H’ the
application of this bound will be confined to simple systems. Therefore it is desirablet
derive an inequality which is more appropriate for practical applications. Inserting g,
in (3) for the variational function x and taking into account My, = Sod we obtaina
non-variational version of bound [

1-g+m{¢|H~Eo|$)
1-g+mq™(¢|H—Eol¢)
where only integrals over H are encountered. However the determination of the

parameters m and q poses the same problem as in bound I. In the following we shal
refer to (4) as bound II.

@

|So|2 =

3. Properties of the bounds

In this section various properties of bound I and bound II will be investigated.

3.1. On the parameters m and q

The quality of the bounds I and II depends upon the parameters m and g, g being
restricted by 0<g<g,. A lower bound g to the lowest eigenvalue g, of M, might be
determined, for instance, by the method of intermediate problems (Weinstein and
Stenger 1972) or by Weinstein’s formula (Weinstein 1934). However, M, contains the
parameter m and therefore q and g, depend upon m.

We are now going to show that

ii_{:; Go(m) =S 8]

The proof is very simple. Denoting m™" by k and considering the operator kMg(k™)
the Hellmann-Feynman theorem leads to

= lsolz-

d
<5 (kaok™)

+0

On the other hand considering the difference quotient we arrive at
4o | = tim gt
ak kao(k™) o Jim go(k™).

Since go(m) is 2 monotonically increasing function
qo(m)<|S,f. @
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withsimilar considerations it can be shown ’chat2 the highegt eigenvalue of Mq(—rrz_) is
gways an upper bound to |So|* and approaches | So| monotqmcally'as m goes to infinity.
frarelated approach to bounds for expectation values see Maziotti (1971). o
Now let us consider bound I as a function of ¢ for fixed m and y and denotelxt with
dg). One easily sees that ¢ <o(q). Furthermore it can be‘ shown (see appendix) tha}t
dg) is 2 monotonically non-decreasing function. That is to say, the better g, is
roximated by g the better will be the bound o(q). Apparently these considerations

yold also for bound II.
Unfortunately the optimization of the bounds with respect to m for fixed y is not

mightforward, since go varies simultaneously with m. The example in §4 will
fiustrate the behaviour of the bounds with respect to m.

12, The limiting behaviour of the bounds for m—> +0

Inthe analysis of the limiting behaviour of the bounds I and II for m - +0, it will be
anvenient to insert the eigenvalue go(m) in (3). Applying the rule of De I'Hdpital we

ghiain

<¢IH‘Eol¢))“ )
(d/dm)qo(+0)/
With the aid of the Hellmann—-Feynman theorem we conclude that

<n|H—Eoln)' ®

|50[2>(1+

d
dm qO( 0) lnf

7
(nld)=0

lequality (7) does not contain the variational function y; hence bounds I and II

approach the same value for decreasing m. This means for small m it will be sufficient to

;:rk with the simpler bound II. Obviously in (7) (d/dm)q,(+0) can be replaced by a
er bound.

33. Behaviour for ¢ = i,
=y, and X # Yo then bound I becomes

=gl \~
1=4g(1-
q( <le§(Mo—qI)Ix>> '

iff"‘?(Ex ~Eo)™, go= 1 and for q = q,, (9) is an equality. For ¢ = ¥, bound I becomes
Orevery possible g.

©)

34 Modification for unknown E,

g?&f;fiﬂ and II contain the ground state energy E, of H. However, this quantity is
tbo Yy known .exactly. In the following it will be shown how we can involve an
. blmd to E, instead _02f Eyitself. For this purpose we consider the function w(e),
Nete thaty:((}? =_(¢[L_(ze) ]q?), whereby L(e)= m(H—‘ €)+|¢Xo|, m>0 and € real.
o o ci =[S0 % It is easy to see that w(e) is a monotonically increasing
fen E’E?’ provided L(e)>0. For given m and €¢=E, the positive-
€58 of L is guaranteed if golm)=m(e—E,). If q meets the condition
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L{€)=qI>0and € = E, then

2o (1 KSILE©=albof |
ISl ’q(l (x!L3(6)-qL2(€)|X>) .

4, Numerical application and discussion

In the following, a numerical application of the bounds I and I1 to the ground state ofthe
hydrogen atom will illustrate some of the properties investigated in the previoy
section. Furthermore, we compare the results with those obtained by applying Eckars
formula (1930)

E, "<¢IH,¢)
E] -EO

and Wang'’s bound (1969)

E\—(¢lH|$) Ke|(H~ E))(H-Ey)x)*
E,~E,  (E;=Eo){x|(H-Eo)*(H-Elx)

[Sol* =

(1)

|Sol* = 1)
to the same problem. These bounds require similar information as bounds Il and!
respectively (the same integrals are involved).

4.1. Numerical results

As trial functions we chose simple exponentials e " with the exponents ¢ = 0-6,0-7,04
respectively. The corresponding expectation vatues of H are (¢|H|d)=-04L
—0-455, —0-48 au.

The variational function y for bound I and Wang’s bound was taken to be

x=[1+(@=Drle™ (13

in which the parameter « is to be varied. This function which has also been used by
Weinhold (1970) ensures the existence of the integral (x|H’|x).

For the lower bound g(m) to the lowest eigenvalue of the operator M,(m) we took
Weinstein’s formula (1934)

q(m)=(x[Mo(m)|x) -4, A% = (x[Ma(m)|x) = (xIMo(m)x)* (1

which has been evaluated using function (13) also. Weinstein’s formula is valid
provided

(X]MO(M)lx)+A<q, (15)

holds; ¢, being the eigenvalue which is closest to g,. To be sure that condition (13)8
met we diagonalized a matrix representation of Mo(m) in a basis of 17 Slater functios
We assume the first eigenvalues to be accurate, at least to four digits. In order 10
compute (7), (d/dm)qo(+0) was approximated in the same basis by diagonalizing?
matrix representation of (I —|dX¢)(H — Eo)(I~|¢Xa)).

The computed bounds are collected in table 1. The three columns of this 2
correspond to the three different trial functions used. The third and fourth 0¥
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Table 1.
/-—_—f
[ 06 07 0-8
;s?ﬂ' 0-82397461 0-90945364 0-96341833
it 0-78666667 0-88000000 0-94666667
g 0-82395928 0-90945019 0-96341801
. 08225 08591 0-9032
pd 0-80846655 0-90118214 0-96058581
= 28 45 70
‘ 060393904 083344080 0-94627262
y 0-6984 0-7574 08316
sod ] 082330389 0-90929812 0-96339870
" 44 85 16:0
; 0-68667712 0-86554932 0-95093301
% 07458 0-8236 0-8905
. 0-7813 0-8414 0-8972
fomala (7) 0-800 0-886 0-948

worrespond to Wang’s bound and the optimal a-value of the variational function y. In
thenext row the computed values of bound 11 are given. The bound was optimized with
respect to the parameter m. Furthermore for each value of m, q has been optimized by
wrying o in function (13). In the following three rows the optimal m-value my, the
wmesponding Weinstein bound q and the optimal a-value a, are presented. In an
analogous way the values for bound I in the next row have been determined. The values
ofo;emerged from the final optimization of formula (3) with respect to x. The last row
presents an approximation to inequality (7). Since it turned out that the bounds I and II
were slowly varying functions of m, we determined this parameter only to one decimal
place. In all cases the parameter « in the variational function was calculated to four
decimal places.

Figure 1 demonstrates the m-dependence of bound II and of g. Curve A corres-
pondsto g(m) and curve B to bound I1. The third curve C represents an approximation
g(m). The curves in figure 1 refer to the trial function, with £ = 0-6. For the other
ral functions similar curves were obtained.

42 Discussion of the results

hntable 1, Waqg’s_ bound exceeds bound I. The following relation explains partly the
zchiwed superiority of Wang’s bound. Inserting xop = Mo(m) ¢ into (12), equality is
eved for every m # 0. This can be verified using the identity

(H_EO)XOpt = m—l<551¢/o_ lsol_sz’)-
}:;;’e{vir(;k;xs does not imply that Wang’s bound always exceeds bound I. For example
b5y from, VrVn = 4}, q= 0-8192 and e;=1-2 bound I gives 0-9084 compared with
Asdeman tang $ .formula with the same .
nadvan tas rat_ed m‘ﬁgqre 1, bgund II exceeds Eckart’s bound for small m. This can
ge since it will be difficult to obtain accurate lower bounds to go(m) for
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Figure 1. The m-dependence of bound Il and g. A, g(m); B, bound II; C, approximationy
Go(m).

large m. For very small m condition (15) could not be fulfilled with our special functios
(13). However, formula (7) leads to bounds comparable with the corresponding Eckat
values.

Let us finally compare bound I and bound I1. In the example chosen, bound I aiwess
exceeds bound I, reflecting the fact that y equals ¢, for & = 1. In general this will mt
be the case. Hence there will be cases where the simpler bound II will supply a better
approximation to |S|* than bound I does.

$. Concluding remarks

In bound I only the ground state energy E, occurs, whereas to our knowledge in othef
variational lower bounds to [Sof*, E, and E, must be known (eg Weinhold 1970
Barnsley and Robinson 1975). If, in Wang’s bound, E, is not known, it mus.tbe
replaced by some ¢, < E, and equality can no longer be achieved. In such casesit willbe
reasonable to apply bound I, since equality can be achieved for every q with 0<q<4
at least in principle.

However, the most promising result of this investigation appears to be bound I
because of its simplicity. Based on our results we believe that bound II will be, in @1
situations, a useful alternative to Eckart’s bound if the evaluation of some accurét
lower bound to go(m) is not too difficult.
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ypendix
il be shown that
Mo—qllP\ !
o=l 1~
samonotonically non-decreasing function for 0<q < q,.
We shall use the abbreviations
a, = {xIMolx), a,={x|Molx), as =2 Re((|x)Xx|Mo|)),

a,=[x|6) and as=|x|Mo|$)[

The first derivative of o(g) exists for 0< g < g, and can be written as
d -2
e —_ N
i o(q)=D(q)N(q)

where

D(g) = (8,84~ aya3+ a3)q’ —2a,{a,~ as)q + ax(a, — as)
wd

N(g)=—a,q’ +(as—a,)q+(ay~as).

(omsidering the extremum (g*, D¥) of the polynomial D(q) it can be easily seen that

D={g,~a)bc™!, where b=alas—a\a,a:+aas and ¢ =a,a,—a,as+a;. The

rplacement of a5 by its absolute value implies b=0. Since a,Z as=>0 and a,c=b,

Biﬂ Ellows. Therefore D(q) has a minimum with D*=0. Thus (d/dq)a(q)=0 for
4=4q.
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